

European Polymer Journal 42 (2006) 2987-2993

www.elsevier.com/locate/europoli

Synthesis and characterization of novel sulfonated naphthalenic polyimides as proton conductive membrane for DMFC applications

Yuming Shang ^a, Xiaofeng Xie ^{a,*}, Hao Jin ^{a,b}, Jianwei Guo ^a, Yaowu Wang ^a, Shaoguang Feng ^a, Shubo Wang ^a, Jingming Xu ^a

^a Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
^b The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China

Received 18 May 2006; received in revised form 7 July 2006; accepted 10 July 2006 Available online 12 September 2006

Abstract

To prepare proton conductive membrane for direct methanol fuel cells (DMFC), a novel sulfonated aromatic diamine monomer, 1,4-bis(4-amino-2-sulfonic acid-phenoxy)-benzene (DSBAPB) was synthesized and characterized by 1H NMR and FT-IR. Then a series of sulfonated polyimides (SPIs) were prepared from DSBAPB with 1,4,5,8-naphthalene tetra-carboxylic dianhydride (NTDA) and a non-sulfonated diamine, 4,4'-oxydianiline (ODA) via one-step high-temperature polymerization method. The sulfonation degree of the SPIs can be controlled by changing the mole ratio of sulfonated monomer to non-sulfonated monomer. The obtained SPI membranes exhibit desirable proton conductivity ranged from 7.9×10^{-3} to 7.2×10^{-2} S cm $^{-1}$ and low methanol permeability of less than 2.85×10^{-7} cm 2 s $^{-1}$. Furthermore, the hydrolysis stability of the obtained SPIs is better than the BDSA based SPIs caused by the flexible structure. © 2006 Elsevier Ltd. All rights reserved.

Keywords: Sulfonated polyimides; Proton conductive membrane; Methanol permeability; Fuel cell; DMFC

1. Introduction

Direct methanol fuel cells (DMFC) have been considered as promising power source in transportation and portable applications for their high efficiency, high power density, low noise, reduced pollution, and the simplicity of system [1,2]. Proton

conductive membranes are the key components of DMFC systems. Up to now, the major used membranes in DMFCs are perfluorosulfonic acid membranes such as Dupont's Nafion. However their undesirable property, high methanol crossover, greatly reduces the cell performance, which limits the actually commercial applications of DMFCs. Therefore, much work has been focused on developing new proton conductive membranes with low methanol crossover and high proton conductivity to replace Nafion [3,4].

^{*} Corresponding author. Tel.: +86 10 62784827.

E-mail addresses: ymshang@mail.tsinghua.edu.cn (Y. Shang), xiexf@mail.tsinghua.edu.cn (X. Xie).

There are two main stratagems to get proton conductive membranes with low methanol crossover. One is the modification of perfluorosulfonic acid membranes such as blending Nafion with other polymers, compositing Nafion with inorganic nanoparticles or sputtering metallic blocking layers on Nafion surface [5–8]. The second is preparation of non-fluorinated membranes such as sulfonated poly (ether ether ketone), sulfonated polysulfon or polyphosphazene and so on [9–12]. The introduction of sulfonic acid groups into polymer backbone is usually by sulfonation of the base polymers. However, the disadvantage of this method is the sulfonation degree is difficult to control. Another approach to get sulfonated polymers is by the polymerization directly from sulfonated monomers. This approach makes it easily to control the sulfonation degree only by changing the mole ratio of the sulfonated monomers to non-sulfonated ones.

Among the numerous polymers, aromatic polyimides are widely used in many fields due to their excellent thermal stability, high mechanical strength, and superior chemical resistance [13]. Recently, much attention has been paid to sulfonated polyimides (SPI) for their potential use as polymer electrolyte membranes for polymer electrolyte fuel cells (PEFCs) including DMFCs [14-16]. Furthermore, the introduction of -SO₃H group can be achieved by the second sulfonation method. Up to now, the widely reported SPIs were mainly synthesized from commercial sulfonated diamine monomer, 2,2'benzidinedisulfonic acid (BDSA). However, the hydrolysis stability of these SPIs is relatively poor. Changing the molecular structure can improve the hydrolysis stability of polymers. Mercier et al. reported six-member ring SPIs derived from naphthalenic dianhydride were more stable than fivemember ring SPIs from phthalic dianhydride [17,18]. Okamoto et al. studied the relationship between the hydrolysis stability and the structure of sulfonated diamine monomer [19,20], they found that the SPIs synthesized from flexible sulfonated diamine exhibited better stability. However, till now, there are very few sulfonated diamine monomers could be commercially available. Hence, it is very important to synthesis more diamines to prepare SPIs with desirable properties.

In this study, a novel sulfonated aromatic diamine monomer with flexible structure, 1,4-bis(4-amino-2-sulfonic acid-phenoxy)-benzene (DSBAPB) was synthesized and then polymerized with 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTDA) and a non-sulfonated diamine via high-temperature polymerization method to get a series of sulfonated polyimide (SPI) membranes with different sulfonation degree. The properties of the obtained SPIs were also investigated in this paper.

2. Experimental

2.1. Materials and measurements

5-Amino-2-chlorobenzenesulfonic acid, hydroquinone and benzoic acid (purchased from Beijing Chemical Reagent Co.) were used as received; naphthalene-1,4,5,8-tetracaboxylic dianhydride (NTDA) and 4,4'-oxydianiline (ODA) were purchased from Acros Organics and purified by sublimation before use; dimethyl formamide (DMF), triethylamine (Et₃N), *m*-cresol, dimethylsulfoxide (DMSO) (purchased from Beijing Yili Fine Chem. Co.) were distilled and stored over molecular sieves before used.

¹H NMR spectra were performed on a Varian Unity 200 spectrometer operation at 300 MHz in DMSO-d₆. FT-IR spectra were obtained with a Shimadzu-FTIR-8400 Fourier transform infrared spectrophotometer; Inherent viscosities of the samples were measured using an Ubbelohde viscometer at a concentration of 0.5 g dl^{−1} in DMSO solution at 30 °C. Thermo-gravimetric analysis (TGA) was recorded on a Perkin–Elmer 7 series thermal analysis system at a heating rate of 20 °C/min under N₂ atmosphere. Water uptake was measured by weighing the changes in a sample (5.0 × 5.0 cm) before and after immersion in water at 30 °C for 24 h.

Proton conductivity was measured using Princeton Potentiostat/Galvanostat model 263A by four-point probe electrochemical impedance spectroscopy technique over the frequency ranging from 100 Hz to 3 MHz according to the method described in Ref. [19].

The methanol permeability of membrane was measured at 30 °C using a liquid permeation cell composed of two compartments containing solution A and B. Where solution A is 20 wt% methanol/water and solution B is deionized water. The tested membrane was immersed in water for hydration before measurements and then vertically placed between the two compartments by a screw clamp. Both the compartments were kept stirred slightly during the permeation experiments. The concentration of methanol in solution B was measured by a gas chromatograph (Shimadzu, GC-14B). The methanol permeability P was calculated by the following equation [14]:

$$P = \frac{k \cdot V_{\rm B} \cdot L}{A \cdot C_{\rm A}}$$

where k is the slope of the straight-line plot of methanol concentration in solution B versus permeation time, $V_{\rm B}$, L, A are the volume of solution B, thickness and effective area of the tested membrane respectively.

2.2. Synthesis of monomer (DSBAPB)

To a completely dried four-necked round-bottom flask equipped with nitrogen inlet, mechanical stirrer, Dean-stark trap and condenser were added 1.10 g (0.01 mol) of hydroquinone, 3.0 g of K₂CO₃, 4.16 g (0.02 mol) of 5-amino-2-chlorobenzenesulfonic acid and 20 ml of DMF. After the mixture was stirred for 1 h, 10 ml toluene was added and the mixture was heated to reflux for 4 h. The toluene was then removed off under reduced pressure. The reaction temperature was raised to 130 °C for 24 h. After cooling to room temperature, the mixture was poured into access of water. The solution was filtered and acidified with HCl solution. The precipitate was collected, washed with water for several times. Then the crude product was neutralized with Et₃N and recrystallized in ethanal/H₂O (1/1) solution to get 4.98 g of DSBAPB-Et₃N salt (72 wt%). FT-IR (KBr, cm^{-1}): 3388, 3339, 3241, 2998, 2689, 1643, 1494, 1231, 1325, 1180, 1080, 1030, 856, 777, 706; ¹H NMR (DMSO- d_6 , δ): 7.06 (s, 2H), 6.73 (s, 4H), 6.50 (d, 2H), 6.47 (d, 2H), 4.97 (s, 4H). Elemental analysis: calculated for C₃₀H₄₆N₄O₈S₂: C, 55.02, H, 7.08, N, 8.56; Found: C, 54.62%, H, 7.11%, N, 8.61%.

2.3. Synthesis of polymers and membrane formation

To a dried 100 mL three-neck flask were added 0.6682 g (1 mmol) of DSBAPB–Et₃N salt, 0.2004 g (1 mmol) of ODA and 10 mL of m-cresol, the mixture was stirred for 0.5 h under N₂ flow until the diamines dissolved, then 0.5361 g (2 mmol) of NTDA and 0.4 g of benzoic acid were added. The mixture was heated to 60 °C for 4 h and 180 °C for 20 h, the obtained viscous solution was cooled to 80 °C and poured into acetone to get fiber-like sulfonated polyimide (SPI-2). Other SPIs with different sulfonated degree were prepared through the above method.

The SPI membranes were prepared by casting the polymer solutions in DMSO on glass substrate which were then heated in a schedule of 80 °C,

10 h; 120 °C, 2 h; 150 °C, 2 h. The obtained SPI membranes were immerged in methanol to remove the residual solvent. Then the membranes were acidified with $10\% \, H_2 SO_4$ solution for 24 h, washed with distilled water and finally dried at 50 °C under vacuum overnight.

3. Results and discussion

3.1. Monomer synthesis

As shown in Scheme 1, the sulfonated diamine monomer DSBAPB was synthesized from hydroquinone and 5-amino-2-chlorobenzenesulfonic acid in DMF via one step coupling reaction at the present of strong base. Because DSBAPB cannot dissolve in common organic solvents, the purification was carried out in its Et₃N salt form. The chemical structure of the obtained diamine was confirmed by ¹H NMR, ¹³C NMR, FT-IR and elemental analysis. In the ¹H NMR spectrum of DSBAPB (Fig. 1), the absorption peak at 4.97 ppm is assigned to the protons of amino group. The signals in range of 6.47–7.06 ppm are clearly assigned to the aromatic protons. In the ¹³C NMR spectrum, the chemical shift signals of aromatic carbon appear in the range of 113.8-153.8 ppm, which agree with the predicted structure of DSBAPB. The FT-IR spectrum (Fig. 2) shows characteristic absorption bands of amino and sulfonic group at around 3388 and 1080 cm⁻¹ respectively. Further more, the elemental analysis values are in good agreement with the calculated ones.

3.2. Polymer synthesis

Sulfonated polyimides were synthesized in *m*-cresol via one-step high temperature polycondensation catalyzed by benzoic acid. By changing the mole ratio of the sulfonated diamine monomer (DSBAPB) to the non-sulfonated one (ODA), the sulfonated degree of SPIs can be easily controlled, and there were totally 4 SPIs with different sulfonated degree prepared in this study (Table 1). The inherent viscosities of the resultant polymers (Et₃N salt form) are in the range of 1.25–0.82 dl/g measured at 30 °C in DMSO, which indicates the high molecular weight of the polymers. Because the structure of sulfonated diamine (DSBAPB) is more flexible than ODA, furthermore, its reactive activity is lower than ODA, which may lead to the lower polymerization degree of polymers at high sulfonation degree level. These two factors cause the viscosity decreases with the

$$HO \longrightarrow OH + CI \longrightarrow NH_2 \longrightarrow$$

Scheme 1. Synthesis of DSBAPB and SPIs.

increase of sulfonation degree. The obtained SPIs were in Et₃N salt form and should be transformed to proton form treated with HCl solution in order to get proton conductivity.

After proton exchange, the resulting SPIs were characterized by FT-IR. As can be seen from the FT-IR spectrum of SPI-2 (Fig. 2), the wide absorption band around 3000–3600 cm⁻¹ is assigned to absorbed water in the sample due to the highly hydrophilic sulfonic acid group. The characteristic absorption of imide ring is observed at 1713 cm⁻¹ and 1671 cm⁻¹ (C=O asymmetric and symmetric stretching). And the sulfonic group absorption (S=O) bond appears at 1246 cm⁻¹ and 1080 cm⁻¹.

3.3. Thermal stability of SPIs

The thermal stability of the obtained SPIs was investigated by means of TGA and the analysis

results are given in Fig. 3. There are three stage of weight loss in the TGA curves. The first weight loss before 200 °C is attributed to the absorbed water elimination. The second weight loss corresponding to the decomposition of sulfonic acid group occurs from 280 °C to 400 °C. The third weight loss due to the degradation of polymer backbone starts at the temperature of higher than 400 °C. The above-described thermal stability is quite enough for DMFCs, which are usually operated at the temperature of lower than 200 °C.

3.4. Proton conductivity and methanol permeability of SPIs

As proton conductive membranes for DMFCs, the crucial properties are proton conductivity and methanol permeability. In this study, the above properties of SPIs were investigated as a function

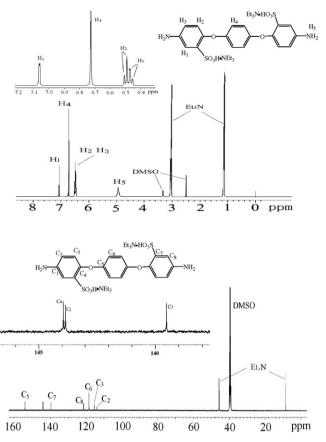


Fig. 1. ¹H NMR and ¹³C NMR spectra of DSBAPB (Et₃N salt form) in DMSO-d₆.

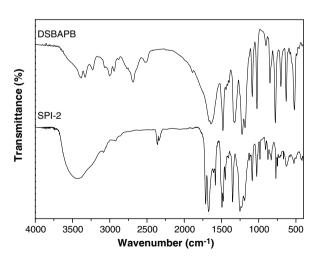


Fig. 2. FT-IR spectra of DSBAPB (Et₃N salt form) and SPI-2.

of the sulfonation degree. Prior to measurements, all the membrane samples were soaked in water over night for hydration. For comparison, these properties of Nafion115 were also determined at the same conditions.

The proton conductivity of SPI membranes at 30 °C and 100%RH is listed in Table 2. At low sulfonation degree of 33%, the membrane has a poor proton conductivity of only $7.9 \times 10^{-3} \, \mathrm{S \, cm^{-1}}$, which is lower than 10% of Nafion. With the increase of sulfonation degree, proton conductivity rises caused by the increase of protonated sites (–SO₃H) and the water mediated pathways. At the highest sulfonation degree level (100%), the proton conductivity can reach to $7.2 \times 10^{-2} \, \mathrm{S \, cm^{-1}}$, which is near the value of Nafion.

The methanol permeability of the obtained SPI membranes rise from $2.37 \times 10^{-8} \text{cm}^2 \, \text{s}^{-1}$ to $2.85 \times 10^{-7} \text{cm}^2 \, \text{s}^{-1}$ with the increment of sulfonation degree, which is considerably lower than that of Nafion115. This can be explained by the difference of the microstructure of these two polymers. It is well known that in Nafion membranes, the extremely high hydrophobicity of perfluorinated backbone and the extremely high hydrophilicity of sulfonic acid group make it quite easy to form hydrophobic/hydrophilic micro-phase separation.

Table 1
Monomer ratio and inherent viscosity of SPIs

Trememer ratio and innerent viscosity of 51 15						
Sample	Monomer ratio (mol) DSBAPB: ODA:NTDA	Sulfonated degree (%)	IEC ^a (mmol/g)			
SPI-1	1:2:3	33	1.27	1.25		
SPI-2	1:1:2	50	1.78	1.12		
SPI-3	2:1:3	66	2.21	1.03		
SPI-4	1:0:1	100	2.91	0.82		

^a Ion exchange capacity.

^b Inherent viscosity of SPIs in Et₃N salt form.

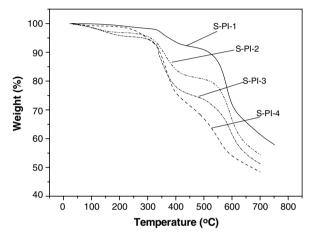


Fig. 3. TGA curves of SPIs (acid form).

Table 2 Proton conductivity, methanol permeability, water uptake and hydrolysis stability of SPIs

Sample	Proton conductivity (S cm ⁻¹)	Methanol permeability (cm ² s ⁻¹)	Water uptake (%)	Hydrolysis stability (h)
SPI-1	7.9×10^{-3}	2.37×10^{-8}	18	180
SPI-2	3.1×10^{-2}	9.12×10^{-8}	38	42
SPI-3	4.9×10^{-2}	1.31×10^{-7}	49	17
SPI-4	7.2×10^{-2}	2.85×10^{-7}	63	2
Nafion	8.4×10^{-2}	1.42×10^{-6}	25	_

The sulfonic acid groups aggregate to form hydrophilic domains. The well-connected hydrophilic domains provide a substance transport channel through which not only proton and water but also some smaller polar molecules such as methanol can penetrate the membrane. The penetration of methanol is called methanol crossover. While in sulfonated polyimides, the backbone is rigid and less hydrophobic, the sulfonic acid group is less acidic and therefore less hydrophilic. So the hydropho-

bic/hydrophilic domain is less separated, in other word, the substance transport channel is narrower in SPIs, which results in the lower methanol permeability compared with Nafion.

3.5. Water uptake and hydrolysis stability of SPIs

As shown in Table 2, with the increase of sulfonation degree, the water uptake of obtained SPI membranes rises from 16% to 63% caused by the increase of strongly hydrophilic sulfonic acid group in polymer chain.

The hydrolysis stability was measured by immerging the samples in distilled water at 80 °C and judged by the loss of mechanical strength (broken when lightly bent). As can be seen from Table 2, SPI-4 can only maintain its mechanical strength less than 2 h because of the high sulfonation degree. With the decrease of sulfonation degree, the hydrolysis stability is greatly improved by the introduction of non-sulfonated diamine. Compared with BDSA based SPI with the similar sulfonation degree, NTDA-BDSA/ODA (BDSA/ODA = 1/1, mole ratio) lose mechanical strength within 5.5 h at 80 °C [20], whereas DSBAPB based SPI-2, NTDA-DSBAPB/ODA (1/1) in this paper, can maintain mechanical strength for 42 h. Okamoto reported that the SPIs with flexible chain structure could undergo relaxation more easily than rigid ones, which may cause better hydrolysis stability of the former [19,20]. In this study, the sulfonated diamine DSBAPB has two flexible ether bond linkages, so the corresponding polymers are more flexible than the SPIs derived from BDSA. As a result, DSBAPB based SPIs exhibit much better hydrolysis stability than the BDSA based ones. It should be noted that the hydrolysis stability of the obtained SPIs is still relatively poor for the practical applications, but it can be further improved by selecting more favorable non-sulfonated diamine monomers because the hydrolysis stability is not only effected by sulfonated diamines.

4. Conclusions

A series of sulfonated polyimides (SPIs) were synthesized from a novel sulfonated aromatic diamine monomer, 1,4-bis(4-amino-2-sulfonic acid-phenoxy) benzene (DSBAPB) with 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTDA) and a non-sulfonated diamine (ODA). The proton conductivity of the SPI membranes ranges from 7.9×10^{-3} to 7.2×10^{-3}

 $10^{-2}\,\mathrm{S\,cm^{-1}}$. The methanol permeability is less than $2.85\times10^{-7}\mathrm{cm^2\,s^{-1}}$, which is considerably lower compared with Nafion. The obtained SPIs exhibit much better hydrolysis stability than the BDSA based ones attributed to their flexible chain structure.

Acknowledgements

The authors wish to thank the National Natural Science Foundation of China (50573041) and the Key Grant International Cooperation Project of China (2004DFB02500) for financial support.

References

- [1] Chang H, Kim JR, Choi KH. Materials and processes for small fuel cells. Solid State Ionics 2002;148(3):601–6.
- [2] Ge J, Liu H. Experimental studies of a direct methanol fuel cell. J Power Sources 2005;142(1):56–9.
- [3] Kreuer KD. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 2001;185(1):29–39.
- [4] Heinzel A, Barragan VM. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources 1999:84(1):70–4.
- [5] Silva RF, Passerini S, Pozio A. Solution-cast Nafion/ Montmorillonite composite membrane with low methanol permeability. Electrochimica Acta 2005;50(13):2639–45.
- [6] Dimitrova P. Modified Nafion[®]-based membranes for use in direct methanol fuel cells. Solid State Ionics 2002;150: 115–22.
- [7] Antonucci PL, Aricò AS, Creù P, Ramunni E, Antonucci V. Investigation of a direct methanol fuel cell based on a composite Nafion[®]-silica electrolyte for high temperature operation. Solid State Ionics 1999;125(4):431–7.
- [8] Ma ZQ, Cheng P, Zhao TS. A palladium-alloy deposited Nafion membrane for direct methanol fuel cells. J Membr Sci 2003;215:327–36.
- [9] Ponce ML, Prado L, Ruffmann B, Richau K, Nunes SP. Reduction of methanol permeability in polyetherketone-

- heteropolyacid membranes. J Membr Sci 2003;217(1): 5–15.
- [10] Manea C, Mulder M. Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications. J Membr Sci 2002;206(2): 443–53.
- [11] Jörissen L, Gogel V, Kerres J, Garche J. New membranes for direct methanol fuel cells. J Power Sources 2002;105(2): 267–73.
- [12] Chang HY, Lin CW. Proton conducting membranes based on PEG/SiO₂ nanocomposites for direct methanol fuel cells. J Membr Sci 2003;218:295–306.
- [13] Yang CP, Hsiao SH, Chung CL. Organosoluble, low-dielectric-constant fluorinated polyimides based on 2,6-bis(4-amino-2-trifluoromethyl phenoxy) naphthalene. Polym Int 2005;54(4):716–24.
- [14] Woo Y, Oh SY, Kang YS, Jung B. Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. J Membr Sci 2003;220:31–45.
- [15] Watari T, Wang HY, Kuwahara K, Okamoto KI. Water vapor sorption and diffusion properties of sulfonated polyimide membranes. J Membr Sci 2003;219:137–47.
- [16] Blazquez JA, Iruin JJ, Eceolaza S, Marestin C, et al. Solvent and acidification method effects in the performance of new sulfonated copolyimides membranes in PEM-fuel cells. J Power Sources 2005;151:63–8.
- [17] Genies C, Mercier R, Sillion B, Cornet N, Gebel G, Pineri M. Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer 2001;42(2): 359-73.
- [18] Genies C, Mercier R, Sillion B, Petiaud R, Cornet N, Gebel G, et al. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer 2001;42(12):5097–105.
- [19] Yin Y, Fang JH, Okamoto KI. Synthesis, proton conductivity and methanol permeability of a novel sulfonated polyimide from 3-(2',4'-diaminophenoxy)-propane sulfonic acid. Polymer 2003;44(16):4509–18.
- [20] Fang JH, Guo XX, Harada S, Watari T, Tanaka K, Kita H, et al. Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4,4'-diamino diphenyl ether-2,2'-disulfonic acid. Macromolecules 2003;35: 9022–8.